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Abstract 

Background:  Antibiotic resistance is a growing global health concern prompting researchers to seek alternatives 
to conventional antibiotics. Antimicrobial peptides (AMPs) are attracting attention again as therapeutic agents with 
promising utility in this domain, and using in silico methods to discover novel AMPs is a strategy that is gaining inter-
est. Such methods can sift through large volumes of candidate sequences and reduce lab screening costs.

Results:  Here we introduce AMPlify, an attentive deep learning model for AMP prediction, and demonstrate its utility 
in prioritizing peptide sequences derived from the Rana [Lithobates] catesbeiana (bullfrog) genome. We tested the 
bioactivity of our predicted peptides against a panel of bacterial species, including representatives from the World 
Health Organization’s priority pathogens list. Four of our novel AMPs were active against multiple species of bacteria, 
including a multi-drug resistant isolate of carbapenemase-producing Escherichia coli.

Conclusions:  We demonstrate the utility of deep learning based tools like AMPlify in our fight against antibiotic 
resistance. We expect such tools to play a significant role in discovering novel candidates of peptide-based alterna-
tives to classical antibiotics.
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Background
As reported by the World Health Organization (WHO), 
the decreasing effectiveness of antibiotics and other anti-
microbial agents indicates the world is at a risk of enter-
ing a “post-antibiotic era” [1]. To counter this threat, new 
drugs or effective substitutes for conventional antibiot-
ics are urgently needed. Antimicrobial peptides (AMPs) 
are one such alternative. AMPs are host defense mol-
ecules produced by all forms of life, including multicel-
lular organisms as part of their innate immunity against 

microbes. Within their respective hosts, eukaryotic 
AMPs have co-evolved with microorganisms to serve 
as a defense against bacterial [2], fungal [3] and even 
viral infections [4]. Unlike most conventional antibiot-
ics, which have specific functional or structural targets, 
AMPs act directly on the microorganisms, often caus-
ing cell lysis, or modulate the host immunity to enhance 
defense against microorganisms [5]. Also, they act faster 
than conventional antibiotics [6], have a narrower active 
concentration window for killing [7], and do not typically 
damage the DNA of their targets [8, 9]. As a result, they 
do not induce resistance to the extent that is observed 
with conventional antibiotics [10]. Nevertheless, if bac-
teria are exposed to AMPs for extended periods of time, 
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they can and do develop resistance even to peptide-based 
drugs including the last resort and life-saving drug, colis-
tin [10, 11]. Hence, fast and accurate methods would be 
valuable tools to discover and design effective AMPs to 
enhance our repertoire of alternative therapeutics.

Direct, large scale discovery of novel AMPs through 
wet lab screening is time-consuming, labor-intensive 
and costly [12]. For these reasons, various computational 
models have been developed over the last few years [12] 
to streamline in silico AMP prediction. Despite the rapid 
progress in the field, currently available models still have 
substantial room for improvement.

The AMP prediction module in the Collection of Anti-
microbial Peptides (CAMP) database [13] includes four 
different models: random forest, support vector machine, 
discriminant analysis, and a single-hidden-layer feed-for-
ward neural network with 64 designed features [14]. The 
iAMP-2L online server adopts fuzzy K-nearest neigh-
bor algorithm, taking pseudo amino acid compositions 
(PseAAC) with five physicochemical properties as input 
features to predict AMPs as well as their potential micro-
organism targets [15]. The iAMPpred online server for 
AMP prediction and classification is based on support 
vector machine and uses PseAAC with compositional, 
physicochemical, and structural features [16]. All three of 
these tools employ conventional machine learning meth-
ods and rely on pre-designed features, requiring prior 
expertise in AMP structure and mechanism for effective 
engineering.

Alternatively, deep learning methods can automati-
cally learn high-level features and usually outperform 
conventional methods in many bioinformatics tasks [17]. 
Recently, few teams developed deep learning models 
for the AMP prediction task. Youmans and co-workers 
demonstrated the feasibility of using a bidirectional long 
short-term memory [18–20] (Bi-LSTM) recurrent neural 
network (RNN) for AMP prediction [21], but the authors 
do not offer any public code or tool that implements their 
model. The Deep-AmPEP30 online server applies a con-
volutional neural network (CNN) for AMP prediction 
[22], though the tool is restricted to working with short 
peptides up to 30 amino acids (aa) in length. The Deep-
ABPpred online server adopts Bi-LSTM with word2vec 
[23], also for short (≤ 30 aa) peptides [24]. The Bi-LSTM 
model from Wang and co-workers is designed for even 
shorter peptides (≤ 20 aa) and specializes to predicting 
AMPs against Escherichia coli [25]. They also provide 
a workflow for designing novel AMPs. Veltri and co-
workers introduced a deep neural network classifier with 
embedding, convolutional, max pooling, and long short-
term memory (LSTM) recurrent layers which is available 
as an online server, AMP Scanner Vr.2, as its user inter-
face [26]. AMP Scanner Vr.2 is the only tool in the deep 

learning category that does not have a strong limitation 
in input sequence lengths; it can handle sequences up to 
200 aa.

While AMP Scanner Vr.2 outperforms the conven-
tional machine learning methods cited above, we note 
that its neural network architecture is not designed 
for extracting long-range information along pep-
tide sequences. Common deep learning methods for 
sequence classification include recurrent neural networks 
(RNNs) and convolutional neural networks (CNNs), as 
employed in combination by AMP Scanner Vr.2. RNNs 
can learn remote dependencies inside a sequence, but 
suffer from vanishing gradients [27]. Similarly, while 
CNNs can extract local information well, it ignores long-
range dependencies [28].

Recently, deep neural networks with attention mecha-
nisms have gained interest, notably for natural language 
processing [29–31] and computer vision [32] applica-
tions. Attention mechanisms, as the name suggests, are 
inspired by our brains’ ability to prioritize segments of 
information when processing textual or visual input. In 
sequence analysis, attention mechanisms are modeled 
by weights assigned to different positions in a sequence. 
These weights amplify or attenuate information from a 
given position to help encode the global information of 
the sequence.

Here, we introduce AMPlify, an attentive deep learn-
ing model that improves in silico AMP prediction by 
applying two types of attention mechanisms layered on 
a bidirectional long short-term memory [18–20] (Bi-
LSTM) layer (Fig.  1). The Bi-LSTM layer in the model, 
as a variant of RNN, encodes positional information 
from the input sequence in a recurrent manner. Subse-
quently, the multi-head scaled dot-product attention [30] 
(MHSDPA) layer computes a refined representation of 
the sequence using multiple weight vectors. The last hid-
den layer of context attention [31] (CA) generates a single 
summary vector using weighted average, learning con-
textual information gained from the previous layer. The 
AMPlify model is trained on a set of known AMPs and a 
select list of non-AMP sequences, and adopts ensemble 
learning to further improve its performance. To the best 
of our knowledge, AMPlify is the first machine learning 
application that applies attention mechanisms for in sil-
ico AMP prediction. We note that non-standard amino 
acids are not taken into consideration in this study, and 
we mainly focus on AMPs from multicellular organisms 
for discovery.

To illustrate the utility of our model, a discov-
ery pipeline based on AMPlify was used to mine the 
AMP-rich North American bullfrog (Rana [Lithobates] 
catesbeiana) genome for novel natural AMPs. Previ-
ously, the North American bullfrog has been described 
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as a rich source for natural AMPs, yielding potent 
classes of bioactive molecules such as ranateurins, 
ranacyclins, temporins, and palustrins [33, 34]. In our 
tests, AMPlify successfully identified these previously 
reported AMPs, along with four novel AMPs with bio-
logical activity in vitro.

The WHO has a published list of priority pathogens 
for which new antibiotics are urgently needed [35]. 
This list includes bacterial species that are increasingly 
resistant to multiple antibiotics. We tested the efficacy 
of our discovered, putative AMPs against selected Pri-
ority Pathogens, including: 1) Pseudomonas aeruginosa 
and Escherichia coli strains, including a multi-drug 
resistant (MDR) carbapenemase-producing (CPO) 
strain of E. coli reflective of WHO’s “Priority 1” patho-
gens; and 2) a Staphylococcus aureus strain reflective 
of WHO’s “Priority 2” methicillin-resistant (MRSA) 
and vancomycin-resistant (VRSA) strains. A Strepto-
coccus pyogenes strain was included as an additional 
Gram-positive bacterial species that causes human 
disease, while this bacterial species has demonstrated 
antibiotic resistance in some earlier works [36].

In our tests, four of the 16 novel AMPs discovered 
show considerable antimicrobial potency against one 
or more of the organisms examined, including the 
clinical MDR isolate of CPO E. coli. These results 
highlight the potential of AMPlify to accelerate AMP 
discovery, the first step towards facilitating peptide-
based therapeutics.

Results
Evaluation of model architecture
To demonstrate the effectiveness of each component 
within our model, we evaluated the model architecture 
starting from a single Bi-LSTM layer and then gradually 
adding attention layers over it. Supplementary Table S1 
summarizes the results of our ablation study, compar-
ing different model architectures using stratified 5-fold 
cross-validation on the training set with regard to five 
different measures of (1) accuracy, (2) sensitivity, (3) 
specificity, (4) F1 score, and (5) area under the receiver 
operating characteristic curve (AUROC). The first sec-
tion of the table compares the performance of the com-
plete architecture of AMPlify, with and without ensemble 
learning, with simpler variations, which include fewer 
hidden layers. The architecture of the only deep learn-
ing based comparator, AMP Scanner Vr.2, was cross-
validated on our training set for comparison using two 
different stopping settings: the optimal fixed number of 
epochs as stated in their manuscript [26] and early stop-
ping as described in this paper (Supplementary Table S1, 
second section). Although overall performance of AMP 
Scanner Vr.2 is not strongly influenced by early stopping, 
it does lead to smaller performance variability as meas-
ured by standard deviation values in tests, indicating that 
the model trained using early stopping is more robust 
than using a default of 10 epochs.

By adding a single CA layer atop the Bi-LSTM layer, 
the model performs similarly to AMP Scanner Vr.2 
based on cross-validation results, with differences 

Fig. 1  Model architecture of AMPlify. Residues of a peptide sequence are one-hot encoded and passed to three hidden layers in order: the 
bidirectional long short-term memory (Bi-LSTM) layer, the multi-head scaled dot-product attention (MHSDPA) layer and the context attention (CA) 
layer. The output layer generates the probability that the input sequence is an AMP
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smaller than 1% in all metrics except specificity 
(< 1.4%). After inserting an MHSDPA layer in the mid-
dle, the cross-validation results for our model reach 
91.70% in accuracy, 91.40% in sensitivity, 92.00% in 
specificity, 91.68% in F1 score, and 96.92% in AUROC 
– an overall improvement compared with the architec-
ture without this layer. This indicates that the atten-
tion layer learns discriminating features of sequences 
processed by the Bi-LSTM layer. We note that the final 
AMPlify architecture already outperforms the AMP 
Scanner Vr.2 architecture in all metrics in our cross-
validation tests. After applying ensemble learning to 
the proposed architecture, the cross-validation per-
formance is further improved to 92.79% for accuracy, 
92.12% for sensitivity, 93.47% for specificity, 92.74% for 
F1 score and 97.44% for AUROC.

To test whether the improvement of our model is 
statistically significant, we performed paired Student 
t-tests based on cross-validation results. These tests indi-
cate statistically significant increase in performance of 
AMPlify over AMP Scanner Vr.2 (early stopped) with 
regard to all five metrics (p < 0.05). The better perfor-
mance of AMPlify without ensemble learning (i.e. Bi-
LSTM+MHSDPA+CA) over the simple Bi-LSTM model 
is also statistically significant in all metrics (p < 0.05), sug-
gesting that the attention layers play an important role in 
the model’s performance.

Further, we cross-validated AMPlify on the dataset 
provided by AMP Scanner Vr.2 and observed that the 
deep neural network architecture chosen in AMPlify 
is overall better for the AMP prediction task compared 

with the architecture of AMP Scanner Vr.2 (Supplemen-
tary Note S1, Supplementary Table S2).

Comparison with state‑of‑the‑art methods
With the set of hyperparameters tuned through stratified 
5-fold cross-validation, the final model of AMPlify was 
trained using the entire training set, with each of the five 
single sub-models trained on five different subsets. Here, 
single sub-model refers to the model with full architec-
ture (Bi-LSTM+MHSDPA+CA) before ensemble learn-
ing. AMPlify, along with its single sub-models, were 
compared on our test set with three other state-of-the-
art tools: iAMP-2L [15], iAMPpred [16] and AMP Scan-
ner Vr.2 [26] (Table 1). All the tools were evaluated with 
their original trained models reported. In this list of com-
parators, AMP Scanner Vr.2 could be trained using third 
party datasets through a utility provided by the authors 
(personal communication with Daniel Veltri), and was 
re-trained on our training set with two different stopping 
conditions, as previously stated.

Among the original models of the three comparators, 
AMP Scanner Vr.2 performs the best on our data in 
general, except for its specificity, which is 1.31% lower 
than iAMP-2L. The accuracy, specificity, F1 score, and 
AUROC of AMP Scanner Vr.2 were all improved after re-
training, with only small changes in sensitivity (< 0.5%). 
Still, in our benchmarks AMPlify outperforms the com-
parators tested, including the two re-trained versions of 
AMP Scanner Vr.2. AMPlify achieves the highest accu-
racy (93.71%), F1 score (93.66%) and AUROC (98.37%), 
improving upon the performance of the next-best, the 
re-trained versions of AMP Scanner Vr.2, by 2.51, 2.53 

Table 1  Performance comparison among different tools on the test set. Performance of different tools are presented with five metrics 
in percentage: accuracy (acc), sensitivity (sens), specificity (spec), F1 score (F1) and area under the receiver operating characteristic 
curve (AUROC)

a Models presented in the referenced papers are available through online servers
b The best hyperparameter as stated in the referenced paper
c The optimal number of training epochs determined by early stopping is 16

Tool Model Acc Sens Spec F1 AUROC

iAMPpred originala 74.01 87.90 60.12 77.18 80.70

iAMP-2L originala 77.96 88.26 67.66 80.02 –

AMP Scanner Vr.2 originala 78.50 90.66 66.35 80.83 88.33

re-trained, 10 epochsb 90.66 91.14 90.18 90.70 97.40

re-trained, early stoppedc 91.20 90.42 91.98 91.13 97.03

AMPlify single sub-model 1 92.40 90.90 93.89 92.28 97.54

single sub-model 2 91.98 91.02 92.93 91.90 97.40

single sub-model 3 92.51 92.69 92.34 92.53 97.82

single sub-model 4 92.10 90.90 93.29 92.00 97.27

single sub-model 5 92.57 92.57 92.57 92.57 97.98

ensemble 93.71 92.93 94.49 93.66 98.37
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and 0.97% respectively. AMPlify also shows the highest 
sensitivity (92.93%) and specificity (94.49%) in our tests, 
suggesting that the model can concurrently reduce false 
negative and false positive predictions. We have also ana-
lyzed the performance of different tools by stratifying the 
test set based on sequence similarities to their training 
sets, again showing how AMPlify performs favourably 
across this spectrum (Fig. 2, Supplementary Note S2).

Further, all five single sub-models of AMPlify yield 
favourable performance in accuracy (91.98–92.57%), 
specificity (92.34–93.89%) and F1 score (91.90–92.57%), 
despite each single sub-model being trained on 80% of the 
entire training set (see 9). The sensitivity values of the five 
single sub-models range from 90.90 to 92.69%, with two 
of them being better than the performance of all com-
parators, while the remaining three being slightly lower 
than the performance of the re-trained, 10 epochs model 
of AMP Scanner Vr.2 (< 0.25%). Still, the lower standard 
deviation values from cross-validation analysis indicate 
that those single sub-models of AMPlify are more robust 
compared with the re-trained, 10 epochs model of AMP 
Scanner Vr.2 (Supplementary Table S1). Similarly, our 
single sub-models score higher than the comparators in 

AUROC, except one of them being on par with the best 
AMP Scanner Vr.2 model and another scoring lower by 
0.13%. The specificity values of the original models of the 
three comparators are relatively low (< 70%), likely due to 
their less stringent selection criteria when building their 
non-AMP sets. The specificity values of AMP Scanner 
Vr.2 improved substantially after being re-trained on our 
training set (90.18% or 91.98%, depending on the num-
ber of epochs trained, Table 1). We have also conducted 
a cross-comparison of AMPlify with AMP Scanner Vr.2, 
re-training our tool on the dataset provided by the AMP 
Scanner Vr.2 publication [26], illustrating the improved 
learning capability of our chosen architecture for the 
AMP prediction task (Supplementary Note S1, Supple-
mentary Table S3, Supplementary Fig. S1).

For a comparison of the classification performance of 
each tool with regard to different classification thresh-
olds, Fig. 3a presents a series of receiver operating char-
acteristic (ROC) curves for the models compared. The 
AUROC results shown in Table  1 correspond to these 
ROC curves. Note that the iAMP-2L online server does 
not allow for parameterization, hence the tool is repre-
sented by a single data point and no AUROC value. The 

Fig. 2  Performance comparison of different AMP prediction tools based on the test sequence similarities to their corresponding training sets. F1 
scores of AMP prediction tools were calculated on test subsets based on similarities to sequences in the training sets. All the AMP/non-AMP test 
subsets were derived from the AMPlify test data, with subsets containing 10 or fewer sequences removed. The size of the round makers indicates 
the number of sequences remaining in the test subset given the similarity threshold
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ROC curves indicate that AMPlify is Pareto-optimal in 
our tests for any classification threshold.

AMP discovery
Previous studies have shown that the skin secretions of 
amphibians are rich in AMPs, which help the animals 
prevent infection by harmful microorganisms [37]. For 
this reason, mining the genomes of various frog species 
for novel AMPs is an attractive proposition. To demon-
strate AMPlify’s practical application, it was embedded 
into a bioinformatics pipeline to find novel AMPs from 
the North American bullfrog (Rana [Lithobates] cates-
beiana) genome [33, 34]. For antimicrobial susceptibility 
testing (AST), we focus on cationic AMPs acting directly 
on biological membranes, the activities of which can be 
directly observed in vitro. Most amphibian AMP precur-
sors possess highly conserved N-terminal prepro regions 
and hypervariable C-terminal antimicrobial domains 
[37]. The prepro regions usually end with a lysine-argi-
nine signal for cleavage to produce bioactive AMPs [37]. 
Based on this, we identified candidate precursors from 
the bullfrog genome using homology search and genome 
annotation tools. We then derived candidate mature 
sequences from those precursors to use as input for 
AMPlify (see 9 for pipeline details). This resulted in 101 
candidate mature sequences, which we fed into AMPlify, 
predicting 75 of them to be putative AMPs. We selected 
peptides between five to 35 amino acids in length with 

a positive charge for further analysis, yielding a final list 
of 16 peptides (Table  2), five of which were previously 
reported sequences [34, 38, 39]. The remaining 11 pep-
tides were synthesized and evaluated in vitro. The UpSet 
plot in Supplementary Fig. S2 summarizes the results 
obtained by applying different combinations of the afore-
mentioned three filters (AMPlify prediction score, length, 
and charge) to the 101 candidate mature sequences. 
Figure  3b shows a visualization of AMPlify prediction 
results for the 101 candidate mature sequences.

Antimicrobial susceptibility testing (AST)
A panel composed of six bacteria was selected to test can-
didate AMP sequences identified using AMPlify: Staphy-
lococcus aureus ATCC 6538P, Streptococcus pyogenes 
(unknown strain; hospital isolate), Pseudomonas aer-
uginosa ATCC 10148, Escherichia coli ATCC 9723H and 
ATCC 29522, and an MDR carbapenemase-producing 
New-Delhi metallobetalactamase (CPO-NDM) Escheri-
chia coli clinical isolate. E. coli ATCC 29522 was used as 
a wild-type drug susceptible control strain. Results from 
AST are presented in Table  3. Supplementary Table S4 
provides additional data with results shown in μg/mL.

The 11 putative AMP sequences were selected for 
in  vitro AST experiments, and four of them displayed 
antimicrobial activity against the targets tested: RaCa-
1, RaCa-2, RaCa-3, and RaCa-7. RaCa-1 was antibacte-
rial against all E. coli strains tested (MIC = 10–39 μM, 

Fig. 3  Visualization of AMPlify model performance and the AMP discovery pipeline application results. a Receiver operating characteristic (ROC) 
curves of AMPlify and comparators are plotted, with round dots marking the performance at the threshold of 0.5. The iAMP-2L online server only 
output labels of AMP/non-AMP without the corresponding probabilities, so it appears as a single point on the plot. b AMPlify prediction scores 
against peptide lengths of 101 sequences analyzed by AMPlify. The grey dotted line represents the score threshold of 0.5 used to distinguish AMPs 
from non-AMPs. Inset shows amplified view of the upper left region of the plot to enhance visualization of the majority of the selected sequences
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MBC = 10–79 μM). RaCa-1 also showed minimal antimi-
crobial activity against S. pyogenes (MIC/MBC ≥ 79 μM) 
with no observed inhibition against the S. aureus and 
P. aeruginosa isolates. RaCa-2 and RaCa-3 inhibited all 
bacterial strains tested. RaCa-2 possessed the strong-
est antibacterial activity against S. aureus and E. coli 
isolates, preventing growth of both species of bacteria 
at concentrations of 1–2 μM and 2–6 μM, respectively. 
Specifically, this peptide was bactericidal against E. coli 
ATCC 9723H (MIC/MBC = 3–6 μM), with similar activ-
ity observed against E. coli ATCC 25922 and the MDR E. 
coli CPO-NDM isolates (MIC/MBC = 2–6 μM). RaCa-2 
was also the only AMP tested to have robust bacteri-
cidal action against both S. aureus (MIC/MBC = 1–2 μM) 
and S. pyogenes (MIC/MBC = 25–49 μM). Compara-
bly, RaCa-3 was considerably potent in  vitro against S. 
pyogenes (MIC = 39 μM, MBC = 39–≥78 μM), P. aer-
uginosa (MIC = 20–≥78 μM, MBC = 39–≥78 μM), E. 
coli (MIC = 2–10 μM, MBC = 2–20 μM), and to a lesser 
extent S. aureus (MIC ≥78 μM, MBC = NI). RaCa-7 
was active against all strains of E. coli (MIC = 6–44 μM, 
MBC = 6–88 μM), with minimal inhibition of S. aureus 
(MIC ≥88 μM, MBC = NI), and no activity against the 
other two species. Overall, the four novel AMP sequences 
displayed the strongest activity against the tested E. coli 
strains. RaCa-2 and RaCa-3 each had potent antibacterial 
action against the MDR E. coli (CPO-NDM) inhibiting 

bacterial growth at ≤10 μM. Of particular note, there was 
little or no observed shift in MIC and MBC values when 
comparing the CPO-NDM E. coli isolate to the ATCC 
25922 wild-type control strain.

The positive control peptide LL37 [34] displayed 
potent antimicrobial activity against all strains of E. 
coli (MIC = 2–4 μM, MBC = 2–7 μM) and P. aeruginosa 
(MIC = 7–≥57 μM, MBC = 7–≥57 μM). However, this 
peptide had no activity against the tested strains of S. 
aureus and S. pyogenes, respectively. The negative control 
peptide, Tp0751, a non-functional truncated section of a 
Treponema pallidum protein with similar characteristics 
to AMPs [42], was inactive against all organisms.

Discussion
Here we present AMPlify, a robust attentive deep learn-
ing model for AMP prediction, and demonstrate its util-
ity in identifying novel AMPs with broad antimicrobial 
activities. It implements ensemble learning by partition-
ing its training set – a novel approach – and outperforms 
existing machine learning methods, including a leading 
deep learning based model. The two attention mecha-
nisms in AMPlify are inspired by how humans perceive 
natural language, paying closer attention to regions or 
words of interest in a sentence. We have observed that 
single sub-models of AMPlify were able to outperform 
the state-of-the-art methods without ensemble learning, 

Table 2  Putative and reported AMP sequences discovered from Rana [Lithobates] catesbeiana. Genomic and transcriptomic resources 
from Rana [Lithobates] catesbeiana [33] were mined using the AMP discovery pipeline based on AMPlify. Top-scoring peptide 
sequences were selected for synthesis and validation in vitro

*Previously reported amphibian peptide sequences [34, 38, 39]
+ Previously reported as a full-length AMP precursor sequence. Uniprot ID: C5IB07
a Net charge at pH = 7

Peptide Name Sequence # aa Net Chargea MW (Da) AMPlify Score

RaCa-1 GLLDIIKTTGKDFAVKILDNLKCKLAGGCPP 31 2 3242.93 1.0000

RaCa-2 FFPIIARLAAKVIPSLVCAVTKKC 24 4 2589.28 1.0000

Ranatuerin-2PRc* AFLSTVKNTLTNVAGTMIDTFKCKITGVC 29 2 3077.66 1.0000

Temporin-1Cb*+ FLFPLITSFLSKFLGK 16 2 1858.30 1.0000

Palustrin-Ca* GFLDIIKDTGKEFAVKILNNLKCKLAGGCPP 31 2 3303.97 1.0000

Ranatuerin-2RC* GLFLDTLKGAAKDVAGKLLEGLKCKITGCKP 31 3 3188.88 1.0000

RaCa-3 GLWETIKTTGKSIALNLLDKIKCKIAGGCPP 31 3 3269.95 1.0000

Ranatuerin-2C* GVFLDTLKGLAGKMLESLKCKIAGCKP 27 3 2821.49 0.9999

RaCa-4 FLTFPGMTFGKLLGK 15 2 1657.05 0.9997

RaCa-5 GLLDIIKDTGKTTGILMDTLKCQMTGRCPPSS 32 1 3395.02 0.9996

RaCa-6 ATAWRIPPPGMQPIIPIRIRPLCGKQ 26 4 2910.58 0.9994

RaCa-7 FFPRVLPLANKFLPTIYCALPKSVGN 26 3 2906.52 0.9985

RaCa-8 FPAIICKVSKNC 12 2 1322.65 0.9961

RaCa-9 FYFPVSRKFGGK 12 3 1432.69 0.9412

RaCa-10 ALVAKIQKFPVFNTLKLCKLELEII 25 2 2872.59 0.6063

RaCa-11 SNRDFFKVNIFRLCG 15 2 1816.11 0.6058
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and we were able to trace the source of this favourable 
performance to the inclusion of attention layers.

Although machine learning methods in general, and 
AMPlify in particular, perform well in predicting AMPs, 
their performance can be limited by a paucity of detailed 
AMP sequence data available for training. First, the mod-
els do not usually consider the potential target micro-
organisms for the predicted AMPs. Although some 
methods report success at that level of granularity using 
public data [15, 16], incomplete and incorrect annota-
tions in AMP databases are confounding. Second, the 
models cannot distinguish whether an AMP acts directly 
on biological membranes and/or by modulating the host 
immunity, since there is no consistently available data 
on these features. AMPs acting only in the latter mode 
require separate assays and might differ in activity within 
different species. Third, the size of the training data is 
still small relative to the data typically employed in most 
deep learning applications. Specially, having more simi-
lar sequences with different antimicrobial activities (i.e. 

non-AMPs that are similar to known AMPs) in the train-
ing set might help the model to be more sensitive to small 
changes in the sequences for prediction. However, avail-
ability of such information is limited. As a result, all the 
publicly available AMP prediction tools face difficulty in 
differentiating between AMPs and non-AMPs that are 
highly similar in their sequences (Supplementary Note 
S3, Supplementary Table S5). We expect this limitation to 
be gradually alleviated as more AMPs are discovered and 
more AMP mutation and truncation studies are done, 
inspired by tools like AMPlify. Although the size of the 
training data is unlikely to ever match what is available 
in natural language processing, image classification, and 
social network analysis domains, to name a few, AMP 
prediction tools can still find practical applications as 
demonstrated here.

Using AMPlify, four novel AMPs were identified with 
proven activity against a variety of bacterial isolates. 
Promisingly, two of the four presented AMPs demon-
strate potent antibacterial activity against the MDR E. 

Table 3  Minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC) of selected AMP candidates 
following antimicrobial susceptibility testing (AST) in  vitro. Candidate antimicrobial peptides were synthesized and purchased from 
Genscript. AST, and MIC/MBC determination was performed as outlined by the Clinical and Laboratory Standards Institute (CLSI) [40], 
with modification as recommended by Hancock [41]. Data is presented as the lowest effective peptide concentration range (μM) 
observed in three independent experiments. LL37, human cathelicidin and a peptide from Tp0751 from Treponema pallidum were 
used as the positive and negative control peptides [34], respectively

a Bacteria obtained and tested at the University of Victoria
b Unknown strain; hospital isolate
c ATCC quality control strain #25922 purchased from Cedarlane Laboratories (Burlington, Ontario, Canada)
d Clinical isolate obtained and tested at the British Columbia Centre for Disease Control

NI, no inhibition observed in vitro

‘—’ = not tested

Abbreviations: Staphylococcus aureus, Streptococcus pyogenes, Pseudomonas aeruginosa, Escherichia coli, ATCC​ American Type Culture Collection, CPO carbapenemase-
producing organism, MDR multi-drug resistant, NDM New-Delhi Metallo-beta-lactamase

S. aureusaATCC 
6538P

S. pyogenesb P. aeruginosaaATCC 
10148

E. coliaATCC 9723H E. colicATCC 25922 MDR E. colid(CPO-
NDM)

Gram-positive Gram-positive Gram-negative Gram-negative Gram-negative Gram-negative

(μM) MIC MBC MIC MBC MIC MBC MIC MBC MIC MBC MIC MBC

RaCa-1 NI NI 79 ≥ 79 NI NI 20 – 39 39 – 79 10 – 20 10 – 39 20 – 39 20 – 39

RaCa-2 1 – 2 1 – 2 25 – 49 25 – 49 25 – 49 49 – ≥99 3 – 6 3 – 6 2 – 6 2 – 6 2 – 6 2 – 6

RaCa-3 ≥78 NI 39 39 – ≥ 78 20 – ≥78 39 – ≥78 5 – 10 5 – 10 2 – 5 2 – 5 5 – 10 5 – 20

RaCa-4 NI NI NI NI NI NI NI NI – – – –

RaCa-5 NI NI NI NI NI NI NI NI NI NI NI NI

RaCa-6 NI NI NI NI NI NI NI NI NI NI NI NI

RaCa-7 ≥ 88 NI NI NI NI NI 11 – 22 11 – 88 6 – 44 6 – 44 6 – 44 6 – 44

RaCa-8 NI NI NI NI NI NI NI NI NI NI NI NI

RaCa-9 NI NI NI NI NI NI NI NI – – – –

RaCa-10 NI NI NI NI NI NI NI NI NI NI NI NI

RaCa-11 NI NI NI NI NI NI NI NI – – – –

LL37 NI NI NI NI 7 – ≥57 7 – ≥57 2 – 4 4 – 7 2 – 4 2 – 4 2 – 4 2 – 4

Tp0751 NI NI NI NI NI NI NI NI NI NI NI NI
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coli tested, and there was little or no observed shift in 
MIC when comparing the MDR and drug-susceptible 
strains. This suggests that the mechanism-of-action of 
these AMPs is unlike those used by conventional antibi-
otics. Thus, AMPs, such as those presented in the current 
study, have the potential to be used in future drug and 
clinical development studies as peptide-based substitutes 
to classical antibiotics. Although several candidates iden-
tified using this pipeline did not show any in vitro activ-
ity against the bacteria tested, we speculate that they still 
may possess activity against other bacterial species or 
other microorganisms (e.g. fungi, virus), or may demon-
strate activity in  vivo via host immune response modu-
lation. Further, the structures of these sequences are 
highly dynamic and susceptible to change in response to 
the surrounding microenvironment, as is frequently the 
case with amphipathic alpha helices. These AMPs may 
act as monomers or form multimeric complexes, with 
their secondary structure flexibly changing in response to 
interaction with membranes or free divalent cations [43]. 
Further studies are required to interrogate AMP mecha-
nisms as these phenomena are not readily observed using 
classical in vitro methods.

Of course, the utility of tools like AMPlify is not limited 
to discovering AMPs from the bullfrog genome; they can 
be generically applied to any input sequence. As such, 
they have the potential to play a role in de novo AMP 
design or enhancement. In conclusion, with their various 
use cases, we foresee tools like AMPlify as being instru-
mental in expanding the current arsenal of antimicrobial 
agents effective against WHO priority pathogens.

Conclusions
This study introduces a novel attentive deep learning 
model, AMPlify, for AMP prediction, and has identified 
four novel AMPs from the bullfrog genome with promis-
ing antibacterial activity against an MDR WHO priority 
pathogen. We illustrate the value of attention mecha-
nisms and a novel ensemble approach in mining genome 
resources for novel AMPs, comparing the performance 
of AMPlify to the state-of-the art machine learning mod-
els. AMPlify is released as an open source tool (https://​
github.​com/​bcgsc/​AMPli​fy) under the GPL-3.0 license.

Methods
Generation of the datasets
We used publicly available AMP sequences to train and 
test AMP predictors. In order to build a non-redun-
dant AMP dataset, we first downloaded all available 
sequences from two manually curated databases: Anti-
microbial Peptide Database [44] (APD3, http://​aps.​unmc.​
edu/​AP) and Database of Anuran Defense Peptides [39] 
(DADP, http://​split4.​pmfst.​hr/​dadp). Since APD3 is 

being frequently updated, we used a static version that 
was scraped from the website on March 20, 2019 com-
prising 3061 sequences. Version 1.6 of DADP contains 
1923 distinct mature AMPs. We concatenated these 
two sets and removed duplicate sequences, producing 
a non-redundant (positive) set of 4173 distinct, mature 
AMP sequences, all 200 amino acid residues in length or 
shorter. AMPs that are highly similar to each other at the 
sequence level were kept as separate entries, since small 
changes in amino acid compositions may lead to large 
changes in AMP activity [45]. Also, it is important to 
maintain as big a dataset as possible for better training of 
a deep learning model [17].

Training and testing binary classification models 
require a negative set, a collection of peptides known 
not to have any antimicrobial activity. Since there are no 
sequence catalogs for peptides devoid of antimicrobial 
activity, studies in the field typically select their non-
AMP sequences from UniProt [46] (https://​www.​unipr​
ot.​org). This may involve excluding several simple key-
words (e.g. antimicrobial, antibiotic) to filter out poten-
tial AMPs [14, 15], or additionally removing all secretory 
proteins [26] as AMPs are characteristically secreted 
peptides [47]. The former proposition is not sufficiently 
rigorous, because AMP annotation is not consistent and 
varies between sources. While keyword filtering may 
leave in the set some differently annotated AMPs, filter-
ing of secretory proteins creates a learning gap for the 
model regarding such proteins without antimicrobial 
activities. Thus, it is important to balance these two strat-
egies when selecting non-AMP sequences.

We designed a rigorous selection strategy for our 
non-AMP sequences (Supplementary Fig. S3), using 
sequences from the UniProtKB/Swiss-Prot database [46] 
(2019_02 release), which only contains manually anno-
tated and reviewed records from the UniProt database. 
First, we downloaded sequences that are 200 amino acid 
residues or shorter in length (matching the maximum 
peptide length in the AMP set), excluding those with 
annotations containing any of the 16 following keywords 
related to antimicrobial activities: {antimicrobial, anti-
biotic, antibacterial, antiviral, antifungal, antimalarial, 
antiparasitic, anti-protist, anticancer, defense, defensin, 
cathelicidin, histatin, bacteriocin, microbicidal, fungi-
cide}. Second, duplicates and sequences with residues 
other than the 20 standard amino acids were removed. 
Third, a set of potential AMP sequences annotated with 
any of the 16 selected keywords were downloaded and 
compared with our candidate negative set. We noted 
instances where a sequence with multiple functions was 
annotated separately in multiple records within the data-
base, and removed sequences in common between can-
didate non-AMPs and potential AMPs. The candidate 

https://github.com/bcgsc/AMPlify
https://github.com/bcgsc/AMPlify
http://aps.unmc.edu/AP
http://aps.unmc.edu/AP
http://split4.pmfst.hr/dadp
https://www.uniprot.org
https://www.uniprot.org
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non-AMP sequences were also checked against the posi-
tive set to remove AMP sequences that lack the annota-
tion in UniProtKB/Swiss-Prot. Finally, 4173 sequences 
were sampled from the remaining set of 128,445 non-
AMPs, matching the number and length distribution of 
sequences in the positive set. An exception to the length 
distribution matching occurred when the length of a 
particular AMP sequence did not have a perfect match 
in the set of non-AMP sequences. In these instances, we 
chose the non-AMP sequence with the closest length. 
The matched length distributions were selected so that 
the model did not learn to distinguish classes based on 
sequence lengths.

The positive and negative sets were both split 80%/20% 
(3338/835) into training and test sets, respectively. We 
note that AMP sequences in our test partition have no 
overlap with the training sets of iAMPpred and iAMP-
2L, but do share 196 sequences with the training set of 
AMP Scanner Vr.2.

Model implementation
AMPlify is implemented in Python 3.6.7, using Keras 
library 2.2.4 [48] with Tensorflow 1.12.0 [49] as the back-
end. The raw output of the model can be interpreted as 
a probability score, thus sequences with scores > 0.5 are 
considered as AMPs and those ≤0.5 as non-AMPs. We 
used binary cross-entropy as the loss function, and the 
Adam algorithm [50] for optimizing weights. Dropout 
technique [51] was applied during training to prevent the 
model from over-fitting. The original positive and nega-
tive training sets were both split into sets of {667, 667, 
668, 668, 668} sequences, and five training and validation 
set pairs were constructed by leaving one set out for vali-
dation to build five single sub-models. To optimize com-
putational time and avoid overfitting, we applied early 
stopping during the training of each single sub-model. 
The validation accuracy was monitored at each train-
ing epoch, and the training process was stopped if there 
appeared to be no improvement for the next 50 epochs. 
The model weights from the epoch with the best valida-
tion accuracy were selected as the optimal weights. The 
output probabilities from the five single sub-models were 
averaged to yield an ensemble model.

Reflecting the composition of the sequences in the pos-
itive and negative sets, AMPlify only considers sequence 
lengths of 200 or shorter containing the 20 standard 
amino acid residues.

Hyperparameter tuning and model architecture
In deep neural networks, the optimal hyperparameters, 
unlike model weights, cannot be learned directly from 
the training process, but they do play an important role 
in model performance. Thus, various combinations of 

hyperparameters must be compared in order to select the 
best set. Here we applied stratified 5-fold cross-validation 
on the entire training set to tune the model and find the 
best set of hyperparameters for the model architecture, 
as well as for training settings, including dropout rates 
and optimizer settings. For a fair comparison, we kept the 
same splits of sequences within cross-validation across 
all hyperparameter combinations. During hyperparame-
ter tuning, we monitored the average performance on the 
validation partitions of cross-validation. Note that these 
validation partitions within cross-validation are different 
from the validation sets for early stopping, while the lat-
ter being additionally derived from the training partitions 
during the cross-validation process. The set of hyperpa-
rameters with the highest average cross-validation accu-
racy was chosen to train the final prediction model.

The AMPlify architecture includes three main com-
ponents: 1) a bidirectional long short-term memory 
(Bi-LSTM) layer, 2) a multi-head scaled dot-product 
attention (MHSDPA) layer, and 3) a context attention 
(CA) layer (Fig. 1). To convert the original peptides into a 
mathematically processable format, each sequence is rep-
resented by a series of one-hot encoded vectors over an 
alphabet of 20 amino acids, yielding x1, x2, …, xL, where 
L is the length of the sequence and each xt is a 20-dimen-
sional vector of zeros and ones with ‖xt‖1 = 1 (t = 1, 2, 
…, L). The Bi-LSTM layer takes those one-hot encoded 
vectors as input and encodes positional information for 
each residue from both forward and backward directions, 
and the output vector for each residue is represented as 
a concatenation of the vectors from both directions. The 
best tuned dimensionality for each direction of Bi-LSTM 
layer was 512, resulting in the entire Bi-LSTM layer to 
be dh = 512 × 2 = 1024 dimensional. Outputs from all 
residue positions of the Bi-LSTM layer are returned as 
the input for the next layer. The best tuned dropout rate 
of 0.5 was applied to the input of the Bi-LSTM layer. 
Encoding from the Bi-LSTM layer for residues within a 
given sequence can be represented as a series of vectors 
ht ∈ R

dh (t = 1, 2, …, L), and the entire sequence can be 
represented as a matrix with all ht s packed as

Next, the MHSDPA layer searches for relations between 
different residues in n different representation subspaces 
[30] (i.e. different attention heads) to further encode the 
sequence, where n is a hyperparameter to be tuned. Each 
residue first gets an intermediate representation within 
each head by calculating a weighted average over trans-
formed vectors of all residues derived from their Bi-LSTM 
representations. The results from each head are then con-
catenated and mapped back to the original dimensional-
ity. We adapted Vaswani and co-workers’ approach [30] 

H = (h1,h2, . . . ,hL)
T ∈ R

L×dh .
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to calculate the attention weights and outputs for the 
MHSDPA layer. The implementation was adapted from 
the GitHub repository at https://​github.​com/​Cyber​ZHG/​
keras-​multi-​head, where rectified linear unit (ReLU) acti-
vation functions and bias terms were added to all linear 
transformations.

In further detail, to obtain attention weights for differ-
ent residues of a sequence within a head i, we calculate 
a set of queries Qi ∈ R

L×dk , keys Ki ∈ R
L×dk , and values 

V i ∈ R
L×dv by transforming H as follows:

where WQi
,WKi

∈ R
dh×dk and WVi

∈ R
dh×dv are weight 

matrices, and BQi

=

(

��
�

,��
�

,… ,��
�
)T

∈ ℝ
L×dk , 

BKi

=

(

��
�

,��
�

,… ,��
�
)T

∈ ℝ
L×dk and BV i

=

(

��
�

,��
�

,… ,��
�
)T

∈ ℝ
L×dv are bias 

matrices. We set transformation dimensions as 
ndk = ndv = dh following what has been previously pro-
posed [30]. A square matrix Ai ∈ ℝL × L, which contains 
weight vectors to calculate intermediate representations 
of all residues within head i, is computed as:

where dot-product of queries and keys are scaled by a 
factor 1√

dk
 , and the softmax function is applied to each 

row of the matrix for normalization. The intermediate 
representation of the sequence within head i is then com-
puted by:

where each single vector zit ∈ R
dv (t = 1, 2, …, L) denotes 

the intermediate representation of each residue of the 
sequence with dimensionality dv. The concatenated 
matrix Z =

(

Z1
L×dv

,Z2
L×dv

, . . . ,Zn
L×dv

)

∈ R
L×ndv is fur-

ther transformed to get the final output of the current 
layer as follows:

where WO ∈ R
ndv×dh is a weight matrix and 

BO =
(

bO,bO, . . . ,bO
)T

∈ R
L×dh is a bias matrix. Each 

vector �� ∈ ℝ
dh (t = 1, 2, …, L) denotes the new representa-

tion of the corresponding residue of the sequence with 

Qi = ReLU

(

HWQi

+ BQi
)

Ki = ReLU

(

HWKi

+ BKi
)

V i = ReLU

(

HWVi

+ BV i
)

Ai = softmaxrow

(

QiK iT

√

dk

)

Zi =
(

zi1, z
i
2, . . . , z

i
L

)T

= AiV i ∈ R
L×dv

M = (m1,m2, . . . ,mL)
T = ReLU

[

ZWO + BO
]

∈ R
L×dh

dimensionality dh. The best head number tuned for this 
layer was n = 32, with dk = dv = 32.

Finally, the CA layer gathers information from the 
MHSDPA layer by reducing L encoded vectors into a 
single weighted average summary vector s. We followed 
Yang and co-workers’ approach [31] to perform this 
operation, and adapted the implementation from the 
GitHub repository at https://​github.​com/​lzfel​ix/​keras_​
atten​tion. The weight vector α ∈ ℝL is calculated using

where W ∈ R
dh×dh is a weight matrix, 

B = (b,b, . . . ,b)T ∈ R
L×dh is a bias matrix, u ∈ R

dh is a 
context vector, and the softmax function provides weight 
normalization. The summary vector s ∈ R

dh is then com-
puted as:

where αt denotes each component in the weight vector. 
Vector s summarizes information of the entire sequence 
into a single vector, and it is passed through the output 
layer of a single neuron with a sigmoid activation func-
tion for classification. The best tuned dropout rate of 0.2 
was applied to the input of the CA layer during training.

In addition to the hyperparameters of the model archi-
tecture, the hyperparameters of the optimizer were opti-
mized through cross-validation. A batch size of 32 and a 
default learning rate of 0.001 were found to be the best 
for the AMP prediction task.

Model evaluation
The performance of AMPlify was evaluated using five 
metrics: accuracy, sensitivity, specificity, F1 score and 
area under the receiver operating characteristic curve 
(AUROC).

The architecture of AMPlify was compared with its 
simpler variations with fewer hidden layers using strati-
fied 5-fold cross-validation on the training set to meas-
ure the value added by each layer as the architecture grew 
more complex. The final version of AMPlify trained on 
the entire training set, as well as its five single sub-mod-
els, were compared with three other tools: iAMP-2L [15], 
iAMPpred [16] and AMP Scanner Vr.2 [26], on the test 
set we built. All comparators were evaluated with their 
original models online.

In addition, as the only comparator with methods for 
re-training, AMP Scanner Vr.2 was cross-validated and 
re-trained on our training set for a fairer comparison. We 
note that, since our dataset is slightly different from those 
used by other methods, the number of epochs required 
to get a deep learning model well trained on different 

α = softmax((tanh (MW + B))u)

s = MT
α =

L
∑

t=1

αtmt

https://github.com/CyberZHG/keras-multi-head
https://github.com/CyberZHG/keras-multi-head
https://github.com/lzfelix/keras_attention
https://github.com/lzfelix/keras_attention
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datasets might differ. Keeping all other hyperparameters 
the same as the original model, we cross-validated and 
re-trained AMP Scanner Vr.2 with two different stop-
ping settings: using the optimal fixed number of epochs 
as reported [26], and using early stopping.

AMP discovery pipeline
A primarily homology-based approach was used to sup-
ply novel candidate AMP sequences to AMPlify for 
further evaluation. The pipeline and its results are sum-
marized in Supplementary Fig. S4 and are detailed below.

Sequences matching the search phrase “((antimicro-
bial) AND precursor) AND amphibian” were downloaded 
from the NCBI Nucleotide database on January 4th, 2016 
and aligned to the draft bullfrog genome [33] (version 3) 
using GMAP [52] (version 20170424) with the following 
parameters: -A --max-intronlength-ends = 200000 -O 
-n20 --nofails.

To refine the putative AMP loci, the gene prediction 
pipeline MAKER2 [53] (version 2.31.8 running under 
PERL version 5.24.0 with augustus [54] version 3.2.1, 
exonerate [55] version 2.2.0, genemark [56] version 2.3c, 
and snap [57] version 2006-07-28) was applied to the 231 
genomic scaffolds with alignment hits from GMAP using 
default settings. The MAKER2 pipeline can use orthogo-
nal evidence from related protein or transcript sequences 
when available to generate a list of high confidence genes. 
Protein evidence consisted of three sets of sequences: 
sequences matching the search phrase “((antimicrobial) 
AND precursor) AND amphibian” from the NCBI pro-
tein database that were downloaded on December 31st, 
2015; experimentally validated non-synthetic amphib-
ian antibacterial peptide sequences downloaded from 
CAMP [13] on March 4th, 2016; and sequences from 
APD3 [44] downloaded on September 29th, 2017. For 
transcript evidence, the set of cDNA sequences supplied 
to GMAP above was supplemented with selected bullfrog 
transcript sequences from the Bullfrog Annotation Refer-
ence for the Transcriptome [33] (BART). Blastn [58] (ver-
sion 2.31.1) was used to align the initial cDNA sequences 
from NCBI to BART, and BART sequences with an 
alignment of greater than 90% identity and 100% cover-
age were selected. A custom repeat element library was 
constructed from predicted repeats previously identified 
in the bullfrog genome [33] and supplied to MAKER2 for 
use by RepeatMasker [59]. The annotation pipeline was 
run with the snap hidden Markov model that produced 
the version 2 bullfrog gene predictions [33].

The MAKER2 gene predictions were filtered in two 
stages. First, sequences containing the highly conserved 
lysine-arginine enzymatic cleavage motif were selected 
and the sequence of the putative mature peptide, pro-
duced via in silico cleavage at the C-terminal side of 

the cleavage motif, was extracted. Second, only puta-
tive mature sequences of 200 amino acid residues or less 
were included. Sequences with non-standard amino acid 
residues were excluded. The resulting peptide sequences 
from these filters were fed into AMPlify for prediction. 
From the predicted putative AMPs, only short cati-
onic sequences with lengths between five and 35 amino 
acid residues were chosen for synthesis and valida-
tion in vitro. We prioritized short cationic sequences as 
shorter sequences are more structurally stable in various 
environments (e.g. in  vitro and in  vivo) [60] lending to 
easier therapeutic applicability.

Antimicrobial susceptibility testing (AST)
From the novel candidate AMP sequences predicted by 
AMPlify, 11 were selected for validation in  vitro. Mini-
mum inhibitory concentrations (MIC) and minimum 
bactericidal concentrations (MBC) were obtained using 
the AST procedures outlined by the Clinical and Labo-
ratory Standards Institute (CLSI) [40], with the recom-
mended adaptations for testing cationic AMPs described 
by Hancock [41].

Bacterial isolates
A panel of two Gram-positive and four Gram-negative 
bacterial isolates was generated to test predicted AMPs. 
Staphylococcus aureus ATCC 6538P, Streptococcus pyo-
genes (hospital isolate, unknown strain), Pseudomonas 
aeruginosa ATCC 10148, and Escherichia coli ATCC 
9723H were obtained and tested at the University of 
Victoria. Additionally, a multi-drug resistant (MDR), 
carbapenemase-producing New-Delhi metallobetalac-
tamase (CPO-NDM) clinical isolate of Escherichia coli 
was obtained from the BC Centre for Disease Control. E. 
coli ATCC 29522 was purchased from Cedarlane Labo-
ratories (Burlington, Ontario, Canada) for comparison 
of AMP activity between a wild type, drug-susceptible 
control and the MDR strain. The latter two strains were 
tested at the BC Centre for Disease Control using identi-
cal AST procedures.

Determination of MIC
Bacteria were streaked onto nonselective nutrient agar 
from frozen stocks and incubated for 18–24 h at 37 °C. To 
prepare a standardized bacterial inoculum, isolated colo-
nies were suspended in Mueller-Hinton Broth (MHB) 
and adjusted to an optical density of 0.08–0.1 at 600 nm, 
equivalent to a 0.5 McFarland standard and representing 
approximately 1–2 × 108 CFU/mL (CFU: colony forming 
units). The inoculum was diluted 1/250 in MHB to the 
target concentration of (5 ± 3) × 105 CFU/mL. Total via-
bility counts from the final inoculum were examined to 
confirm the target bacterial density was obtained.
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Selected candidate AMPs were purchased from Gen-
script (Piscataway, NJ), where they were synthesized 
using the vendor’s Flexpeptide platform. Lyophilized 
peptides were suspended in sterile ultrapure water or 
filter-sterilized 0.2% acetic acid as recommended by 
solubility testing reports provided with the GenScript 
synthesis. AMPs were diluted from 2560 to 5 μg/mL by 
a two-fold serial dilution in a 96-well polypropylene 
microtitre plate before 100 μl of the standardized bacte-
rial inoculum of (5 ± 3) × 105 CFU/mL was added to each 
well. This generated a final test range of 256 to 0.5 μg/mL. 
MIC values were reported as the peptide concentration 
that produced no visible bacterial growth after a 16–24 h 
incubation at 37 °C.

Determination of MBC
For each AMP dilution series, the contents of the MIC 
well and the two adjacent wells containing two- and four-
fold MIC were plated onto nonselective nutrient agar 
and incubated for 24 h at 37 °C. The concentration which 
killed 99.9% of the initial inoculum was determined to be 
the MBC.
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prediction tools based on the test sequence similarities to their corre-
sponding training sets. Supplementary Note S3: Comparison of different 
AMP prediction tools tested on similar sequences with different labels. 
Supplementary Figure S1: Learning curve comparison (on the validation 
sets for early stopping) of single sub-models of AMPlify trained on two 
different datasets. (a) Single sub-models of AMPlify trained on our own 
training set; (b) Single sub-models of AMPlify trained on the AMP Scanner 
Vr.2 “Train+Tune” partitions. Square markers denote the best epochs cho-
sen by early stopping, and the x-axes have been set in the same range in 
order for a clearer comparison. Supplementary Figure S2: UpSet plot of 
the 101 candidate mature sequences with regard to the three filters. This 
plot visualizes the results obtained by applying different combinations of 
filters to the 101 candidate mature sequences. Supplementary Figure 

S3: Workflow of selecting the non-AMP sequences from the UniProtKB/
Swiss-Prot database. Supplementary Figure S4: Workflow of the AMP 
discovery pipeline. The process describes how 75 putative AMPs were 
identified from the bullfrog genome. Invalid sequences denote those not 
suitable for AMPlify prediction, with lengths outside the range 2 to 200 
amino acids or with non-standard amino acids. Supplementary Table S1: 
Stratified 5-fold cross-validation results of different architectures on the 
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and without ensemble learning, with its simpler variations. The second 
section shows the architecture of AMP Scanner Vr.2 cross-validated on our 
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F1 score (F1) and area under the receiver operating characteristic curve 
(AUROC) are presented along with their standard deviations in percent-
age. Supplementary Table S2: Comparison between AMP Scanner Vr.2 
and AMPlify cross-validated on all data provided by AMP Scanner Vr.2 
(“Train+Tune+Test” partitions). This table shows the 10-fold cross-valida-
tion results of AMP Scanner Vr.2 and AMPlify on all data provided by AMP 
Scanner Vr.2. Values of accuracy (acc), sensitivity (sens), specificity (spec) 
and area under the receiver operating characteristic curve (AUROC) are 
presented along with their standard deviations in percentage. Supple‑
mentary Table S3: Performance comparison between AMP Scanner Vr.2 
and AMPlify re-trained on the AMP Scanner Vr.2 “Train+Tune” partitions 
and tested on their “Test” partition. Since AMPlify applies early stopping 
and the exact size of training set for each single sub-model is smaller, the 
exact training size for each model is listed here in the second column. 
Values of accuracy (acc), sensitivity (sens), specificity (spec) and area under 
the receiver operating characteristic curve (AUROC) are presented in 
percentage. Supplementary Table S4: Minimum inhibitory concentra-
tions (MIC) and minimum bactericidal concentrations (MBC) of selected 
AMP candidates following antimicrobial susceptibility testing (AST) 
in vitro. This is a supplementary table to Table 3. Candidate antimicrobial 
peptides were synthesized and purchased from Genscript. AST, and MIC/
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